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The problem of the effect of a die on an elastic semi-infinite strip fixed rigidly along 
the short edge is considered. Integral equations for the contact pressure and normal stress 

P I 
at the clamping are formed. These equations 

I are reduced to two systems of linear algebraic 

equations by the Bubnov-Galerkin method. 
Both systems turn out to be well specified, and 

their coefficient matrices are almost trian- 

gular. 
Numerical computations were carried out 

for a die with a flat bottom, for an oblique 
and a parabolic die, and the high efficiency 
of the pethod was shown. 

1. Let us consider the problem of com- 
pressing a half-strip by two symmetrically 
disposed rigid dies under the following bound- 
ary conditions (Fig. 1) : 

P u=v=o, s=qfh=O 

Fig. 1 =. IYI=h-lIYII<l (1.1) 
t Xllll ’ Y=f& O(z<oo (1.2) 

$, = 0, Y=fl, 06z<c z2b (1.3) 
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-v=[i3--I+(4lsgny, y=*i c<xdb (1.4) 

Here U, u are displacements along the z1 and y, axes, respectively, and T~,~,, ug, are 
the tangential and normal stresses ; :!*(z) is the equation of the die surface ; G’tlie total 

displacement of the die under the effect of a force P. In [1] the problem for a half-strip 

with the boundary conditions (1.1). (1.3) is reduced to a Fredholm integral equation of 
the first kind for the normal stress at’the clamping a(q). After simple manipulations this 
equation becomes 

1 b 

S aol)@Pl, !l)dq+ b”,(i)o*(r, y)dr+Cs=O S (1.5) 
‘1 C 

*(q y) _ o* ok Y) + @,* 6% Y) 
9 - 2 , @+ (rl, Y) = In I tl - Y I + 

t- 
vat_ 2v+.2 

v (v + 2) In ((2 - a2 - Y21 - $) (1 - 9) [ (2 “$)* + (2 T ;z),), 3 + 

+ln[(4-@2--21 -&) [4_i_Q+4+i_J - 

-:; L,(y)$8+2-II(y), 4 (v + 2) 
s=o 

1 
v=_zp i 

L, (!/) = i Y2k+2 (i) 
k+s r (Z/c + 2s + 4) 

k=o 
/- (k+a+2*5++,k+s.+s+ I’ (2k + 3) I’ (2s + 3) _-- 

+ (zs + 2 + +) (2k + 2 + +) Q-2k+2s+3 + tk + s + 2, tk + s + 2.5) Q2k+B+b] 
03 

Qn= ’ 5 C” (2n - e-l) kndh 

21’(n+1) (sh h + h) ’ r (n + 1) = nr (n) (W 
0 

1 O” 
In=2r(n+l) s 

,-’ (2h - 8) (J. - 1- @) h”dh 

(sh k + h) 
0 

(i.7) 

+ [2 + q&y)] Q?I;,I + v (k + 1.5) Q.2, +,) 
a, 

sinIr 1 
09 (‘9 Y) = F 1 

A 
T 

sh J. &, 
+ 

(chkchhy-yshkshky)---ctlAYT 
I (1.8) 

A+ = sh21 + 2h WI 

Here Ca is an arbitrary constant. c~ the Poisson coefficient. Let us use the formulas 

obtained in [l] for the displacement v . 
Then the contact condition (1.4) is written as follows : 
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b .1 

4V e 
a,,, (4 N (2, 4 dr - (! + ,,) s a (a) a+ tz, 4 da = - [a - /+ @)I2 ti _ ,,,) $ , 

e -1 

c<x<b (i.iO) 

N (z, z) = K (z - z) -K (z + z), 
Q, (ch 2k - i) cos Ak d), Ktk)=S 1A+ &ii) 
0 

Here o*(z, a), A+ are functions given by (1.8) and (1.9). Putting 

z=c,,+ac, r=cO+ap, z=cO+at, co=%@+& a=%@-cc) 

f’(s) = f(6)* 0 *(r, Y) = O(P, Y), WI (r) = - Q(P), NV, 2) = Nt, 6) 

we rewrite the relationships (1.5),(1.10) as follows: 

1 1 

S 
a 01) a~ h Y) dtl - a s Q(P)o(P, y)dp+Ca=O, lyl<i (1.12) 

-1 -1 

1 1 
S -- 4v 1 

-1 

Q (‘1 IV (4 5) dl$; (i + ,,) a S aP)w(C, aIda-- ’ [6.-!f(E)lAo=O 
-1 

(1.13) 

The problem is therefore reduced to solving a system of integral equations (1.12) - 
(1.13) in two unknowns : the normal stress at the clamping a(q) , and ‘the contact pres- 
sure under the die Q(t). 

It should be noted that the considered problem is a two-parameter problem with the 
dimensionless parameters c0 = 1/z (C + b), a = ilz(b - C) (Fi,g. 1). 

Let us turn to the determination of the contact pressure Q(t)- 

2. Let us first put Q(p) = S(p - t) in (1.12), where 6(p - t) is the Dirac delta func- 
tion. We determine u&l, t) from tile obtained relationship. 

Having studied the nature of the stress singularity at the clamping in [l], we chose the 

Bubnov-Galerkin method as the numerical method of solving (1.12). We assume 
ll=7Jl 

a~ (tl. 1) = = [ (1 - t12)p”-‘Eo (0 + 2 F, (1) Tzn (tl) 1 (2-Q n=o 
Here Ts,, (q) is an even Chebyshev polynomial of the first kind; Eo(r), F,(f) are un- 

known coefficients; PO is the least positive root of the characteristic equation 

2X co9 npo - 4 PO’ + 1 + x= = 0, x=3--p (2.2) 

Let us substitute (2.1) into the integral equation (1.12), and let us demand that the 

expression obtained be orthogonal to (1 - #)-‘I *T&y) on the segment r-1, 11. We hence 
obtain a system of linear algebraic equations in Eo(t), F,,(t), Cs(t). The arbitrary con- 

stant C*(t) is determined from the static equilibrium condition 
1 

S a0 (q, 1) d9 = 0 (2.3) 
-1 

Starting from the asymptotic expansion of the integral 0(&y) in residues of the inte- 
grand, we represent &(t), F,(t), Cq(t) as 
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(2.4) iE0 (2) = 
2(i+v)k=f _B y 

JGqFJe 
k (cos an~BA1 - sin al,yBLt) 

k=o 

F, (t) = ‘m z: ewBky [cos aky& (k) - siriaky& (k)] (2.5) 

Cs (f) = $!-$iJ 5’ e+’ [cos aliyCr,r - sin ak$r.r] 
k=o 

ak + ipk = Ak, ah & + hk = 0, ah > 0, Bk > 0, y = l/r (CO -I- 4 > yo # 0 (2.6) 

Here Yo is the lower bound of the variable y. The system of linear algebraic equations 
in the unknowns Eo(t), F,,(t), C,(t) then goes over into a system of linear algebraic equa- 

tions in the new unknowns B&r, &,r(k),Ckt and Bka, A,*(k), Cks. For any arbitrary con- 
tact pressure C(t) the stress at the clamping is determined from the relationship 

1 

ahI= Q W%O(tl, f)dt S (2.7) 

where u&l, 1) is given by (2.1). -r 

3, Let us substitute (2.7) into (1.11). We hence obtain an integral equation in the 
contact pressure 1 

S R 
Q (I) p (4 0 dt - 16 - f (01 Ao ha --_=(I (3.1) 

-1 

a (4 6) = K Ia (6 - t)l - K PO + = (5 + 01 + ha $ (4 f) 
1 

$ (b 5) = s *(a, 0 o(L a) da 

(3.2) 

-1 

The following properties of the kernel have been established in @I: 

a) For k (- 00, m) 
K(k) = - In k + F(k) (3.3) 

where F(k) is an even continuous function in all its derivatives with respect to k. 

b) For k + 00 the kernel K(k) tends exponentially to zero. 

In the case */a (CO -I- at) 2 yo, % (CO -I- a f) > TO, ‘r. # 0 ;the kernel K PO -I- 4 6 -i- dl 

is evidently a continuous function with all its derivatives with respect to c and r. 

Let us investigate the nronerties of the function Mt. 6). From 11.12) we nave 
1 

(3.4) 

Substituting (3.4) into (3.2) under the conditions (2.3), we obtain 
1 1 

q P, 6) = & 1 da S aoh 0ao(q, Wh a) drl (3.5) 

From (3.5) it follows : 
-1 -1 

a) The function $(t, c) = $(c, r) because @(n, a) is a symmetric kernel, 
b) The function $(t, 6) is continuously differentiable any number of times with 

respect to t and 6, since uo(a, t) and uo(q, 6) are continuous functions with all their 
derivatives with respect to t and 6 ,respectively. in the domain ‘J’Z (CO + at) ,>/ YOB 
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l/¶(co+dJ>yo,yo#o. 
c) For *h (CO ,+ at) + 00, rk (co + ac) > yo the function $(1, 6) decreases expo- 

nentially. 
Since the free term in (3.1) is assumed continuous and continuously differentiable 

any number of times, the singularity in the solution of this equation will hence be defined 
by the logarithmic kernel contained in Kfa(E - t)]. then follows from 133 that the 

solution of (3.1) can be represented as 
. k=N 

(3.6) 

where Tk (t) is a Chebyshev polynomial of the first kind. 
Proceeding from the representation (3.6). we reduce the integral equation (3.1) to a 

system of linear algebraic equations in Cs, by the Bubnov-Galerkin method, just as this 
was done in [4]. This system can be written thus : 

+ 2 2 ,--;;-po 
r=N(Ro,l-Cos) c _ Ao 

84 

r=N 

Co(Hmo-Cmo)+- 2 (RmymQ+ c+.$k, 
i<m<N 

a=1 

where R,,,,, Cm, are coefficients of the following expansions: 

F [e(I,--01 = K [a (5 -t)] + In a (6 -t) = 5 J&T,,, (6) T., (l) 
m=o 
s=o 

c m=6m+ams, K WO + a (5 + 01 = 5 %nJm (6) T, (t) 

m=o 
r=o 

$ (4 5) = i 6msTm (t) ‘r, (t) 

m=o 
s=o 

m=iU 

(3.7) 

(3.8) 

(3.3) 

(3.10) 

(3.11) 

(3.12) 
m=o 

4, Computations were carried out for p = 0.317408, po = 0.7OOOOO.Their represen- 
tations in terms of the Howland integral [S] were used to evaluate Q,, In given by (1.6). 

(1.7). The expanded matrix of the system in the unknowns Eo(~), F,,(f), Cs(t) was com- 
puted by the mechanical quadrature method [S]. 

Values of the stresses in the framing were computed by means of (2.1) practically 
exactly for m = 5 *Thus. in the case y = .0.25 and 1 7 1, the fifth approximation (m =5) 
in (2.4) - (2.6) differs by no more than 0.5% from the sixth (m k.6). However, the 
error with which the coefficients &(t), F,,(t) have been determined by means of (2.4). 
(2.5). and which arises because of discarded terms (1 > 2), introduces an additional 
error in the found stresses which does not exceed 3.5% . Therefore, the total error in 
the solution a&l, 1) for y = 0.25 and 1 = 1 does nor exceed 4%. 

This case corresponds to a quite close disposition of the die to the clamping. 
In the case y > 0.5, 1 = 1 the total error in the solution is less than 1%. 



144 V. V; Kopasenko 

To calculate the coefficients H, in the expansion in (3.9) we used the representation 

Fla(C- (4.1) 

The values of II, are represented in Table 1. 
Table 1. 

%I( a) 
P BP m 

u = 0.5 a=1 a=l.:, 

1 0 “‘)“074’3 1 0 
oXG7242 (-1) 1 

-o.l3”H!m 0 2’,] YX~‘, . . I_. 1 0.5711fj215 
2 O.2lXil8~G 0.4977!)!)1 CJ. (;Ii:W5li 
:I O.f87OW (-1) 2 
4 O.P”7”334 q-q 3 

--O.l1X75H:! (-1) -o.Slil’:i’IHX (-1) --0.1s11/1/1:~ 

5 0.3742Xj (-3) /t 
0.1557:11;0 (-1) o.X!l.<!l/1t (-1) 

6 0.57HA (-5) r 

: 
0 . x504 7 (-5) ;I 

0. “21!W3 (-5) 

0.2 2040 (-5) 
-O.l1(i813!) (-6) 

0.105ci 
1: 0.222 

(-6) ;: 
O.G443156 (-8) 

(-7) I) 
II 0.20 

O..% 
(-8) 

:f 
:: 

0.4.4 

Note . -0.1187582 (-1) means -0.01187582 . 

The representation of F[a( 5 - t)] in terms of the Howland integral [5] was used in 

deriving (4.2). (4.3). Values of &,(a) for a -0.5, 1.0, 1.5 are arranged in Table 1. 

The expansions 
s+nl<Zk 

ra (l/z [z; -II) = 2 b6m (k) T6 (1) Tt,, (5) (4.4) 
I =o 

m-0 

for arbitrary k were obtained by successive application of the relationship 

Th &/,I f - LJ) :-= - q&‘/slf - rl) -I- Tk(‘/llf - MT,(r) - T,(l)1 (4.5) 
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Substituting (4.4) into (4.1). and collecting like terms, we obtain the values of the coef- 
ficients R,, on the basis of the expansion (3.9). Representations of (3.10). (3.11) in 
terms of Bessel functions of complex argument were used in determining the coefficients 
c ma* Hence, when three terms (M = 2) are retained in the expansion (3.12), the solution 
of(3.1) is m=a 

Q (0 = r& mzo J’rngrns 

k=N 

gm= x CrnkTk (l) (4.6) 
k=a 

Values of the coefficients G,,,, in the expression in (4.6) are presented in Table 2 for 
o=0.5,c~=l,N = 4 and a = i, CO = 1.5, N = 6. 

0.5 

i 

The 

Table 2. 

m / Grno / Gmt / Cm2 1 Cm3 / Cm4 / St5 1 Grn6 

0 0.29454 -0.01713 -0.02699 0.00094 
i -0.0085fi -0.oi350 -0.00423 0.36922 -0.00422 0.64774 -0.00124 -0.00251 -0:00024 8.Ei: 

0 0.49539 -0.02532 -0.11647 0.00035 0.00405 0.00093 -0.00031 
:: -0.01266 -0.05822 -0.00886 0.47230 -0.00886 0.71427 -0.029i6 -0.00456 -0.01000-0.00037 0.00011 0.00206 0.00102 0.00020 

found approximations N - 4 (a = 0.5) and N = 6 (a = 1) are practically 
exact since they ‘differ from the next approximations N = 6 (a = 0.5) and N =8 (a =l) 

t 

-0.95105 
-0.90631 
-0.80901 
-0.58779 
-0.42261 
-0.17365 

Suez 
0:42261 
0.58779 
0.80901 
0.90631 
0.95105 

T 
t 

0.02079 
0.12050 
0.21901 
0.40849 
0.58i68 

8’XEE . 

Table 3. 

Q PI $ & 

a=0.5 

1.8673 1.3798 
1.3839 1:0494 
1.0213 0.81303 
0.77542 0.67127 
0.706i6 0.63948 
0.65704 0.62140 
0.64354 0.61623 
0.64306 0.61355 
0.67022 0.61679 
0.72122 0.63364 
0.92506 0.73960 
1.2392 0.93867 
I. 6635 1.2253 

UZl 

Table 4 

e (t) h / G 

az0.5 

4.14009 
-0.14088 
CO.14231 
-0.13876 

YEE 
o&336 

Cl=1 

-0.09276 
-0.09263 
-0.09208 
-0.08545 

?EEZ 
Cl:31954 

by not more than 0.02%. 
If it is here taken into account that the normal 

stresses at the clamping have been computed with 
not more than 4% error, then the total error in the 

solutions found N = 4 (a = 0.5) and N =6 (a’ =l) 
does not exceed 1%. 

By selecting appropriate values of po, plr pz.con- 
tact pressures for three kinds of dies can be com- 

puted: for a die with a flat base, for an oblique 
die, and for a parabolic die. 

Presented in Table 3 are values of the contact 

pressures computed by means of (4.6) for the cases 
N = 4 (a = 0.5) and N = 6 (a = 1) when 

PO = nb/ha, PI = pa = 0 (die with a flat base). 
From an analysis of Table 3 it follows that the 

contact pressures rise as the point under consider- 

ation approaches the clamping, whereupon a tilting 
moment acting on the die is manifest. 

Therefore, the force P must be applied at a dis- 

tance e/h = l/a a Go,/Ga (Fig. 1) from the axis of 
symmetry of the die (Fig. 1). 

Values of Q(+obtained herein for N = 6, u = 1, 

~0 = i.5,differ by not more than 14% from the 
values of the contact pressures computed in 143 in 
the absence of clamping. 

Values of the stresses at the clamping computed 
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by (2.1) and (2.7). are presented in Table 4. The coefficients Eo(t), F,(i) were hence 
reDresented as .S=s s-=0 

Representations of (‘2.4), (2.5) in terms of Bessel functions of complex argument were 
used to determine the coefficients Is and e, (n). 

It is seen from Table 4 that the stresses in the framing diminish as the the zone of 
contact increases. All the computations were made on the “Minsk-12” computer. 

The author is grateful to I. I. Vorovich for formulating the problem and for valuable 
comments during its execution. 
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